
Nodal Cilia Dynamics and the Specification of the Left/Right Axis in Early
Vertebrate Embryo Development
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ABSTRACT Nodal cilia dynamics is a key factor for left/right axis determination in mouse embryos through the induction of
a leftward fluid flow. So far it has not been clearly established how such dynamics is able to induce the asymmetric leftward flow
within the node. Herein we propose that an asymmetric two-phase nonplanar beating cilia dynamics that involves the bending of
the ciliar axoneme is responsible for the leftward fluid flow. We support our proposal with a host of hydrodynamic arguments, in
silico experiments and in vivo video microscopy data in wild-type embryos and inv mutants. Our phenomenological modeling
approach underscores how the asymmetry and speed of the flow depends on different relevant parameters. In addition, we
discuss how the combination of internal and external mechanisms might cause the two-phase beating cilia dynamics.

INTRODUCTION

During vertebrate embryo development three spatial body

axes are specified (1). The specification of the left/right (L/R)

axis prompts Nature to perform a chiral choice, posing the

interesting question of how it manages to make the same

choice systematically. In recent years a number of reports

have connected the presence of monociliated cells in the

node of mouse embryos with early L/R axis specification

(2–5). These nodal cells exhibit cilia with 910 architecture

that apparently rotate in a clockwise direction (ventral view).

In wild-type (wt) phenotypes such motion collectively gen-

erates a fast asymmetric leftward fluid flow within the node.

Accordingly, mutant mouse embryos either lacking cilia or

with immotile cilia in the node show L/R randomization as

well as absence of directional fluid flow (2–3,6–7). In addi-

tion, elegant experiments have shown that the phenotype in

mutant embryos with immotile cilia can be rescued if an

external artificial fast leftward flow is imposed (8). More-

over, by applying an artificial rightward fluid flow inside the

node of wt embryos, the correct positioning of organs (situs)

is reversed (8). These experimental evidences highlight the

importance of nodal cilia dynamics to induce an asymmetric

flow that subsequently establishes the proper situs in mouse

embryos. Importantly, recent experiments have shown that

such leftward fluid flow dynamics is conserved among

different species (5,9).

Two mechanisms have been proposed to explain the role

of fluid flow in specifying the phenotypes and gene ex-

pression patterns of wt and mutant embryos: the advection by

the fluid flow of a protein (morphogen) toward the left side of

the node, and the bending of mechanosensor immotile cilia

(2,3,5,10,11). Independently of which of these two mecha-

nisms, or combination of them, is responsible for the

subsequent asymmetric gene expression cascade, the afore-

mentioned evidences indicate that the dynamics of the nodal

fluid flow constitutes a crucial step of the L/R symmetry

breaking process. In this regard, several open questions re-

main. Herein we address a number of them. First, how the

motion of the cilia leads to an asymmetric leftward flow.

Second, how the ciliary dynamics coordinates the two sym-

metries previously broken to specify the L/R axis systemat-

ically. Third, what the elements are that lead to an anomalous

fluid flow dynamics in the so-called inv mutants.

Theoretical models in L/R specification have been

advanced at many levels, including reaction diffusion

systems, regulatory networks, or cooperative adhesive

dynamics (12–14). Also, the dynamics of cilia and flagella

have been modeled and simulated at various degrees of detail

(15–18). Specifically, Brokaw has recently analyzed the

mechanism by which nodal cilia rotate clockwise in the wt
murine node (19). However, only Cartwright and collabo-

rators have recently explored the fluid flow of the murine

node, albeit their modeling approach did not involve a

detailed characterization of the structure and dynamics of the

cilia. Still, they correctly predicted that nodal cilia move

around an axis tilted to the posterior in the wt (20,5).
The nodal fluid flow regime corresponds to low Reynolds

numbers (LRN) where motion follows Aristotelian dynamics

rather than Newtonian dynamics. The Reynolds number, Re,
measures the importance of the inertial forces with respect to

the viscous forces in a fluid flow: Re ¼ LcU/y, where Lc is
a characteristic length, U is a characteristic velocity, and y is

the kinematic viscosity. In the case of the murine node, if we

take Lc to be the width of the node (50 mm),U as the leftward
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flow speed (5–50 mm/s), and y as the kinematic viscosity of

an aqueous medium, y ¼ 10�6 m2/s, the Reynolds number is

of order 10�3, indicating that viscosity dominates over

inertia (20). It has been established that, due to the lack of

inertia in this regime, and disregarding possible boundary

effects, at least two degrees of freedom are needed to induce

a directional motion, which is commonly known as the

Scallop Theorem (21). Thus, a rotating stiff cilium can

hardly generate an asymmetric flow in the LRN regime.

Indeed Cartwright and collaborators proposed that posteri-

orly tilted rotating cilia (modeled by means of rotlets) induce

a leftward flow above the rotlets (20). However, they also

point out that in the absence of boundary conditions an

equally fast rightward flow is induced below the rotlets.

Therefore additional elements are required to explain the

emergence of an asymmetric directional leftward fluid flow.

Some authors have claimed that the shape of the ciliated

organ, i.e., the boundary conditions, might be crucial to

determine the asymmetric flow (2,3,22). However, previous

theoretical studies (20) and recent experimental results (5)

have shown otherwise. It has also been proposed that the

presence of cell surfaces creates a viscous resistance that

slows down the flow induced by tilted cilia motion (20,23).

However, the presence of the cell surface alone does not

ensure that the flow will still be leftward close to the cell

surface (and not rightward but slow), as experimentally

measured (5,20,23).

Directional fluid motion has been thoroughly studied in the

context of 912 cilia and flagella, which show a characteristic

two-phase beating dynamics, with a power and recovery

stroke that is predominantly planar, i.e., their phases of

motion occur in the same plane. This two-phase dynamics

induces a unidirectional fluid flow in the direction of the

power stroke (23,24). Primary cilia with a 910 architecture

are mostly immotile mechanosensors widely found in the

surface of many cells both in embryos and adults of many

species (25). In the case of the embryo node, the primary cilia

are a notable exception and show, as mentioned above, an

apparent rotational motion. Some flagella, such as the eel

sperm flagellum, also show a 910 architecture and do move.

In this case, their motion is nonplanar describing an helicoidal

waveform (26). Furthermore, experiments with mutant Chla-
mydomonas showing a 910 phenotype in their flagella in-

stead of their normal 912 structure (27) confirm that whereas

the 912 flagella have a planar beatingmotion, mutant flagella

lacking the central-pair of microtubules perform a more

irregular asymmetric beating motion when demembranated

and in the presence of low calcium concentration (,10�6M).

Thus, planar and three-dimensional beating patterns seem to

be interchangeable given the right external conditions, such

as concentration of calcium and viscosity (28). In the case of

nodal cilia, the absence of the central pair of microtubules in

the 910 cilia might prevent planar motion altogether (29).

Taking into account all these evidences, we asked whether

the motion reported for nodal cilia could correspond to a

more complex movement pattern than the one reported so

far. Thus, we propose that the apparent rotational motion of

cilia actually corresponds to a two-phase nonplanar beating

dynamics. We analyze this claim by providing in silico ex-

periments that are supported by in vivo data. To investigate

the flow induced by such collective ciliary activity we use

a ‘‘simple’’ hydrodynamics modeling approach. Within this

framework we keep the minimum, yet sufficient, level of

detail to account for the ciliary dynamics in a realistic man-

ner. Our approach shows that a two-phase nonplanar beating

dynamics is able to induce an asymmetric leftward flow. The

underlying mechanism rests on the idea that such motion

results from 1), the combined action of internal active motors

that produce the bending of the ciliary axoneme and the two-

phase dynamics typical of cilia and flagella; and 2), the

external viscous interaction between the cilia and the fluid

flow when wall effects due to the cell surfaces are taken into

account. Moreover, these results are in agreement with recent

experiments on nodal monocilia, which suggest that such

dynamics is crucial for establishing an asymmetric leftward

flow that is conserved among different species (5).

MATERIALS AND METHODS

In silico experiments: numerical simulations

We have adimensionalized the equation of motion for the bead such that the

unity length corresponds to twice the length of mouse nodal cilia (L ¼ 5

mm), and the angular frequency of rotation during the effective stroke is set

to v ¼ 1. The differential equations have been integrated using a fourth-

order Runge-Kutta algorithm. The average speed Æu~æ of beads embedded

in the nodal flow has been computed from the speed of 81 beads moving in

the nodal region during 15 periods of rotation. The beads are distributed

uniformly in a plane z ¼ 5 mm above the cell surfaces and embedded in

the flow created by 36 cilia forming a square. The standard deviation s is

obtained from the average speed of each bead. There are no significant

differences between the average flow on a square or a pearshaped config-

uration of cilia. In addition, the average flow for inv mutants has been

computed over five different arrangements of cilia.

In vivo experiments: video-microscopy details

The embryos of timed pregnant ICRmice (CLEA Japan, Meguro-ku, Tokyo,

Japan) were dissected and mounted on a silane-coated glass slide with

a silicone-rubber spacer, as described previously (3). Only embryos with

a fully developed node (nodal stage 5 or 6) were selected for the analysis (3).

For high-speed recording of the ciliary activity, the differential interference

contrast image technique was employed. High-speed recording was im-

plemented by a CCD camera, HG Imager 2000 (Eastman Kodak, Rochester,

NY), at 500 frames/s (see Supplementary Material, Movies S1 and S2). The

genotype of mutant mouse embryos was determined after observation (3).

The digitized images of the high-speed CCD camera were analyzed with

NIH Image software (free software developed at the National Institutes of

Health). The tip and root of each cilium were traced in each video frame. The

rotational axis was estimated fitting the projected trajectory of the tip of

a cilium (ventral view projection) with an ellipse. We assumed a circular

shape for the nonprojected trajectory. Our results indicate that cilia move

around an axis tilted 40� 6 10� to the posterior with an apical angle of 40�.
We estimated the angular frequency by back-projecting the trace of the tip to

the plane perpendicular to the rotational axis of rotation. For a stiff cilium
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rotating at constant angular speed, such frequency should lead to a constant

value. In contrast, we obtain that the frequency varies as a function of time

(Fig. 6, c and d) and has two distinct phases: power stroke (fast motion) and

recovery stroke (slow motion). The average frequency of rotation is 10 Hz,

as previously reported. The same calculation for an in silico cilium gives

similar qualitative results. We estimate the phenomenological elastic re-

laxation time, tb, by means of the ratio between the angular speed during the

recovery stroke and the power stroke. For a detailed description of the

analysis of in vivo experimental data, see Okada et al. (5).

Cilia bending

The local bending introduced by means of our modeling framework can be

readily obtained. This gives an estimate of the actual bending of nodal cilia.

Without lost of generality in regard to the following calculation, we assume

a coordinate system for which Q ¼ 0� and u ¼ 0�. First, note that

R~i11;kðtÞ ¼ R~i;kðtÞ1 e~i11;kðtÞ; where e~i11;kðtÞ ¼ ðL=nÞ (sinCsinbi11ðtÞ;
sinCcosbi11ðtÞ; cosC): Thus, the local bending between three consecutive

spheres reads l ¼ je~i11;kðtÞjsinf ¼ 2a sinf; where f is the angle defined

between e~i11;kðtÞ and e~i;kðtÞ (Fig. 2 a). Such an angle can be computed in

terms of the scalar product, e~i11;kðtÞ � e~i;kðtÞ ¼ ðL2=n2Þcosf ¼ ðL2=n2Þ
(sin2 c (sin bi11 sin bi 1 cos bi11 cos bi)1 cos2 c). We now notice that the

maximal angular deflection between three consecutive spheres, Db, is Db ¼
tbv/(n � 1) � 5 � 10�2p (Fig. 1 b). During the time span this maximal

difference lasts, the relation bi11¼ bi1 Db holds and it is easy to check that

the product e~i11;kðtÞ � e~i;kðtÞ becomes bi-independent: e~i11;kðtÞ � e~i;kðtÞ ¼
ðL2=n2Þcosf ¼ ðL2=n2Þ (sin2 c cos D b 1 cos2 c). Thus, l ¼ 2asinf ¼
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (sin2 ccosDb1 cos2 c)2

p
; and as expected, no bending is obtained

if Db ¼ 0 (tb ¼ 0). An upperbound of the total bending of the cilium can be

estimated as L ¼ nl ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (sin2 ccosDb1 cos2 c)2

p
� 0:1mm: This

value is greater than the bending elicited by the viscous drag.

MODELING APPROACH FOR CILIA DYNAMICS

The motion of 912 beating cilia has been described as a

two-phase dynamics with an effective or power stroke and

a recovery stroke (23). The power stroke occurs while the

extended cilium moves rapidly and far from the cell surface.

The recovery stroke corresponds with the return of the bent

cilium, with slower motion close to the cell surface (23). We

interpret the motion of the 910 nodal cilia as similar

nonplanar two-phase beating dynamics. Indeed, high-

resolution in vivo video-microscopy data depict a two-phase

motion with slow and fast strokes of the cilium and the

bending of the cilia when moving more slowly close to the

cell surface (Supplementary Material, Movies S1 and S2;

Fig. 6 d; Materials and Methods; see also Okada et al. (5)). In

addition, these experimental data support the theoretical

proposal by Cartwright and colleagues that cilia move

around an axis tilted to the posterior (20).

To account for a two-phase beating ciliary dynamics that

includes bending we use the formalism of polymer hydro-

dynamics (30). This approach allows a realistic description

of cilia by taking into account their length,width, andflexibility.

Then, we model each cilium as a string of nmoving spheres of

radius a connected bymassless rods plus one static sphere at the

base (Fig. 1 a). The model can be applied to any cilia by setting

the correct parameter values. For mouse embryos, the radius of

a nodal cilium is a � 150 nm and its length is L � 5 mm, and

therefore n ¼ (L – a)/2a � 16.

For a cilium that is moving around an axis tilted with angle

Q in the anteroposterior direction, the vector position

R~i;kðtÞ ¼ ðxi;kðtÞ; yi;kðtÞ; zi;kðtÞÞ of sphere i of cilium k reads
(Fig. 1)

xi;kðtÞ ¼
L

n
sinC+

i

j¼1

sinbjðtÞ1 x0;k

yi;kðtÞ ¼
L

n
�i sinQcosC1 cosQsinC+

i

j¼1

cosbjðtÞ
" #

1 y0;k

zi;kðtÞ ¼
L

n
i cosQcosC1 sinQsinC+

i

j¼1

cosbjðtÞ
" #

1 z0;k;

(1)

where we have assumed, supported by the experimental

observations (5), thatC andQ are constants (C� 40� andQ
� 40�) for all i. Note that at any given time jR~i;kðtÞ�
R~i�1;kðtÞj ¼ L=n; so that the length of the cilium is time-

invariant. Therefore, as noted in Eq. 1, all the ciliary

dynamics is contained in the rotational functions bi(t) (Fig.
1). If cilia were rigid rods, their dynamics would be

described by simply setting bi(t) ¼ vt 1 u, where v is the

FIGURE 1 (Top) Cilia are modeled as strings of spheres. For mouse

embryos, the radius and length of cilia are a � 150 nm and L � 5 mm,

respectively (;16 moving spheres). The average frequency of rotation is 10

Hz. Q, C, and b stand for the tilting, apical, and rotational angles,

respectively. (Bottom) Time-evolution of the angular variable bi(t) during

one period of beating. The function bi(t) characterizes the nonplanar beating
dynamics as well as the bending of the cilium along its length. Since the

cilium is flexible and can bend, bi(t) changes along the cilium’s length.

During each rotation, the cilium undergoes a two-phase motion correspond-

ing to the effective and recovery strokes. The elastic relaxation time tb ¼ t1
1 t2 accounts for the time-dependent bending of the cilium. The parameters

t1 and t2 of sphere 2 are indicated. The maximal angular deflection between

three consecutive spheres, Db, has been indicated.
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angular velocity and u is an arbitrary phase. However, for a

two-phase beating dynamics involving ciliary bending amore

elaborated definition is required. We account for such a two-

phase dynamics by means of a phenomenological approach:

during the power stroke, the cilium is extended and traces half

of the trajectory with angular velocity j̇pow ¼ v; during the

recovery stroke, the cilium bends (Materials and Methods)

and completes the cycle with a reduced average angular speed

j̇rec ¼ v=ð11vtb=pÞ: Note that we have introduced

a phenomenological elastic relaxation time constant, tb. As

mentioned above, video-microscopy images indeed reveal

that cilia are performing a two-phase dynamics (see

Supplementary Material, Movies S1 and S2; Fig. 6 d, and
Okada et al. (5)) with a ratio between recovery and power

stroke (j̇rec=j̇pow � 0:6� 0:7) that fixes the elastic relaxation
time tbv � 0.5p (Materials and Methods). From the

modeling point of view, such timescale leads to a time-

delayed dynamics for the rotational functions bi(t) as follows.
We begin by defining the functions,

x1ðtÞ ¼ HðtmodðTÞÞHðt̂� tmodðTÞÞ;
x2ðtÞ ¼ HðtmodðTÞ � t̂ ÞHðt̂1 t1 � tmodðTÞÞ;
x3ðtÞ ¼ HðtmodðTÞ � t̂� t1ÞHð2t̂1 t1 � tmodðTÞÞ;

where H(x) is the Heaviside function, t̂ ¼ p=v is the time

the power stroke lasts, and T ¼ 2t̂1 tb is the total period of

motion. Thus, the average frequency is f ¼ 1/T, which for

mouse embryos takes the value f � 10 Hz. The functions

xi(t) section the time-interval into periodic pieces of length T.
Those pieces are partitioned into ð0; t̂ Þ; ðt̂; t̂1 t1Þ; ðt̂1 t1;
2t̂1 t1Þ; and ð2t̂1 t1; TÞ:Wealso define the following piece-

wise periodic function, b(t,t1,t2) ¼ vt mod(T) x1(t) 1

px2(t) 1 v(t � t1) mod(T) x3(t) 1 u, where tb ¼ t1 1 t2.

The parameter u characterizes the direction with respect to

the motion of the cilium when performing the power and the

recovery strokes. In the case of a clockwise motion, if u ¼
p/2 (u¼ 3p/2), the cilium acts as a straight rod, power stroke,

when rotating toward the right (left) and it bends, recovery

stroke, when moving toward the left (right). For nodal cilia,

which are tilted to the posterior, we set u ¼ 3p/2 and thus,

the recovery stroke occurs when the cilium moves close to

the cell surface. With these definitions, the two-phase motion

of cilia can finally be represented by setting

biðtÞ ¼ b t;
ði� 1Þtb
ðn� 1Þ ;

ðn� iÞtb
ðn� 1Þ

� �
; (2)

where the time delay satisfies p(n � 1)/v . tb . 0. Fig. 1

shows the function bi(t) during one beating cycle. Note that,

during the power stroke, the cilium advances as a straight rod

and all spheres move together for a time t̂: However, during
the recovery stroke each sphere waits for a time t1 (sphere-

dependent) before starting to move on its own. During this

waiting time each sphere moves when pulled by other

spheres (see Eq. 1). Then it starts moving again on its own

for a time t̂ before stopping again for a time t2 ¼ tb � t1,

waiting until all spheres have completed the cycle and have

returned to their initial positions. As a result the cilium bends

(see Supplementary Material, Movies S1 and S2). We stress

that if tb ¼ 0, the cilium does not bend and it induces sym-

metric leftward and rightward flows.

MECHANISMS FOR CILIA BEATING

The two-phase nonplanar beating motion of nodal cilia which

involves bending of the ciliary axoneme and a slowing-down

of themotionwhen sweeping close to the cell surface could be

a result of internal driving mechanisms and/or external

conditions. Biological motion in eukaryotic cells is usually

accomplished by three ATP-consuming motors: myosins,

kinesins, and dyneins (31,32). Axonemal dyneins drive the

movement of cilia and flagella and their lack of function has

been related to the Kartagener syndrome that produces situs

inversus phenotypes (33,34). Moreover, bending of the 912

ciliary axoneme is known to be caused by an active sliding of

microtubules orchestrated by dyneins (24,31) and we already

mentioned that absence of the central microtubules prevents

planar motion in 910 cilia (29,35). Therefore, we can

hypothesize that the beating dynamics of nodal cilia is a result

of an active internal mechanism involving the sliding activity

of dynein. At present, it is not yet known how the directions of

the two-phase beating cilia and flagella dynamics are

established. Recently it has been shown that the sliding

activity of dyneins depends itself on an externally imposed

bending of the axoneme (36). Therefore, we could envisage

the possibility that an external element to the cilium that

favors ciliary bending along a specific direction can be driving

the directions of the power and recovery strokes. The cell

surface creates a viscous resistance such that the closer to it,

the more difficult it is to move in the surrounding fluid (23).

Thus, ciliamoving around an axis tiltedwith respect to the cell

surface’s perpendicular direction encounter a higher viscous

resistance in their phase of motion when moving closer to the

cell surface. Thus, one might hypothesize that, as a result of

this viscous interaction, the cilia bend.We now proceed to test

this hypothesis. The stiffness of nodal cilia with respect to

thermal forces can be estimated by means of the dimension-

less ratio lp/L, where lp is the so-called persistence length

(37,38). The latter accounts for the length beyond which the

cost in terms of elastic energy for bending is negligible, lp ¼
EI/KT, where EI stands for the bending stiffness, K is the

Boltzmann constant, and T is the temperature (;300 K). The

stiffer the material, the larger the lp. For microtubules and

flagella EI has been estimated to be 10�23 Nm2 and 10�22

Nm2, respectively (39–41), that leads to the ratio lp/L � 104,

i.e., a rather stiff cilium to be bent by means of thermal

fluctuations. This result allows us to effectively evaluate the

elastic properties of cilia using a continuum approximation.

Thus, a rough estimate of the bending induced by the drag can

be obtained by treating cilia as cantilevered beams moving in

a flow that exerts a force along the beam,F, parallel to the base

2202 Buceta et al.
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plane where the beam is attached (42). The displacement of

the free end with respect to an inflexible beam reads in that

case, L ¼ FL3/8EI, where we note that possible twisting

effects and the weight of the beam have not been considered.

The force can be estimated by means of the approximated

solution that accounts for the drag at LRN of a cylinder of

radius a moving in a flow with relative velocity v0 (43),

F ¼ 8pLv0h

1� 2 g1 ln
av0
4y

� �h i:
Taking into account that the nodal fluid is an aqueous

medium, h � 10�3 Ns/m2, y � 10�6 m2/s, and that the

relative velocity of the cilia to the flow is of order v0 � 10

mm/s, the displacement induced by the drag becomes L �
0.01 mm. Our modeling framework permits us to estimate

the bending involved in the cilia dynamics observed in

experiments, and accordingly to analyze whether this

bending is only due to the viscous drag. Such calculation

indicates that the bending of nodal cilia is at most L � 0.1

mm (Materials and Methods). Thus, the drag does not

account by itself for all the observed bending but contributes

to it. Moreover, the experimental observations presented

herein and in a recent work show that the slowing-down of

the motion and the bending always occurs when the cilium is

moving close to the cell surface: cilia tilted to the posterior/

anterior slow down and bend when moving rightward/

leftward (Fig. 6 d; see also Okada et al. (5). This result

introduces a correlation between viscous forces (drag) and

bending that suggests the importance of the former as the

external mechanism that drives the ciliary dynamics.

According to all these evidences and our numerical

analysis we propose that the bending of the ciliary axoneme

might be due to a combination of internal and external

mechanisms. Thus, we conjecture that the former would be

responsible for the two-phase dynamics whereas the latter

would be a guiding force. In this way, cilia would use the

external mechanism of bending to instruct the internal

machinery when performing each of the two phases of

motion, such that the resistance to the medium is reduced

when it is largest. Such phase resetting is achieved in our

modeling approach by conveniently setting up the angular

phase u, depending on the value of Q. By means of this

orchestrated mechanism, an optimal performance from an

energetic point of view would be obtained.

MODELING APPROACH FOR THE FLUID FLOW

The nodal fluid flow has been experimentally visualized by

the motion of small latex fluorescent beads added to the

embryo culture medium. Thus, to have a realistic comparison

of our theoretical results with the experimental data, we have

formulated the equations describing the dynamics of such

beads embedded in the nodal fluid. The equation of motion

for a small spherical particle in a nonuniform flow can be

derived from first principles (44). An analysis of such an

equation for LRN reveals that the beads used in the nodal

experiments are truly passive tracers: their velocities in the

bulk of the node correspond to the fluid velocity. Moreover,

since in the LRN regime the Navier-Stokes equations

describing the dynamics of the extraembryonic fluid become

linear, the flow generated by an ensemble of cilia can be

approximated as the sum of the flow induced by each single

cilium. Temperature corrections are of second order, and the

effect of the curvature or wall lift can be perceived only near

the boundaries.

Thus, the equation of motion of a bead in the node simply

reads

dr~

dt
¼ u~ðr~; tÞ;

where r~ is the position of the bead and u~ðr~; tÞ the velocity

field that at position r~and time t is produced by the dynamics

of the cilia. Thus, the velocity field u~ðr~; tÞ appears as a result
of the action of the N cilia present within the node, each of

which is modeled by means of n 1 1 spheres, as previously

described. That is,

u~ðr~; tÞ ¼ +
N

k¼1

u~kðr~; fR~i;kg; tÞ;

where u~kðr~; fR~i;kg; tÞ is the velocity field that at point r~ and

time t is induced by the dynamics of cilium k that has its basis
at R~0;k and is formed by a set of n moving spheres with

locations fR~i;kgi¼1;...;n:
Once the dynamics of the spheres has been fixed (Eqs. 1

and 2), the velocity field u~kðr~; fR~i;kg; tÞ induced by cilium k
is computed in terms of the coordinates and velocities of the

spheres that define the cilium by means of the well-known

hydrodynamic expression that accounts for the velocity field

induced by a moving sphere in a quiescent fluid (45). Spec-

ifically, u~kðr~; fR~i;kg; tÞ is the sum of the velocity fields

generated by the spheres of the cilium,

u~kðr~; fR~i;kg; tÞ ¼
3

4
+
n

i¼0

ai;kðtÞ
jr~� R~i;kj3

3 � _R~R~i;k jr~� R~i;kj2 1
a
2

i;kðtÞ
3

 !
1 ðr~� R~i;kÞ

"

3 ð� _R~R~i;k � ðr~� R~i;kÞÞ 1�
a
2

i;kðtÞ
jr~� R~i;kj2

 ! !#
:

(3)

Let us briefly comment on some limitations, and advantages,

introduced by our modeling approach. As noted in Eq. 3,

each individual sphere moves in a quiescent fluid contrib-

uting independently (besides the local conformation effects

indicated below) to generate the fluid flow. This disregards

the hydrodynamic interactions between spheres that could

be taken into account on the basis of the Oseen-Kirkwood

theory (46). However, the problem becomes extraordinarily
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complicated from the analytical and computational points of

view and yields, in regard of the main goal of this work, an

unnecessary level of detail. Drawing parallels with related

problems in polymer hydrodynamics, we have considered

instead a simplification à la Rouse: a first-order approxi-

mation to the fluid velocity field where no hydrodynamic

interaction between monomers is taken into account but

which, significantly, allows us to qualitatively depict the poly-

meric dynamics (47). The advantage of our approximation

may be readily foreseen: we keep the complexity of our

simulation scheme at a minimum, but ensuring that the level

of detail is enough to describe the ciliary activity in an

effective manner and, more importantly, its effects.

Nonetheless, to capture the inherent effect caused by cilia

bending into the fluid flow, conformational effects must be

taken into account. Thus, the local conformation (or shape)

of the cilium has been included in u~kðr~; fR~i;kg; tÞ by means

of time-dependent radii ai,k(t), to reflect the fact that moving

an elongated object in the direction of its main (long) axis

is easier than moving it in the direction perpendicular to its

main axis (48). The velocity field generated by a moving

sphere depends on the radius ‘‘exposed’’ to the surrounding

fluid. Then, note that the local conformation of the cilium

masks such radius since each sphere is attached to its

neighboring spheres by massless rods with directions

e~i61;k ¼ R~i61;k � R~i;k: We account for this fact by defining

an effective radius in terms of the portion of the radius that is

covered by neighboring spheres with respect to its direction

of motion (Fig. 2 b). We compute the effective radius of each

sphere as follows. Let us consider sphere i and its nearest

neighbors i 1 1 and i� 1. If sphere i from cilium k is moving

with velocity � _R~R~i;k; the portion of its diameter that is not
covered by a neighbor with respect to its direction of

movement reads (Fig. 2 b)

je~i61;kjsina ¼
���� �

_
R~R~i;k

j� _R~R~i;kj
3 e~i61;k

����:
Therefore, the portion along the diameter of sphere i
perpendicular to its speed that is covered by its neighboring

spheres (i 1 1 or i � 1) becomes

di61;kðtÞ ¼ 2a�
���� �

_
R~R~i;k

j� _R~R~i;kj
3 e~i61;k

����
 !

H e~i61;k �
� _R~R~i;k

j� _R~R~i;kj

 !
:

The Heaviside function indicates that only neighboring

spheres located (with respect to the direction of motion of

sphere i) in front of (and not behind) sphere i affect its drag.
Thus, we define the effective radius of sphere i as

ai;kðtÞ ¼ a� 1

2
ðdi11;k 1 di�1;kÞ

� �
H a� 1

2
ðdi11;k 1 di�1;kÞ

� �
:

The last term avoids negative radii arising when the angle

between e~i11;k and e~i�1;k is less than p/2 and � _R~R~i;k lies

between those vectors. A time-dependent bending that

reduces the drag of the cilium and induces a slower flow

during the recovery phase than during the power stroke is

a mandatory component of the proposed mechanism as we

will show below.

Finally, we briefly detail further fluid dynamics consid-

erations that have been taken into account in our modeling

approach. First, even though the extraembryonic fluid is

known to be a colloidal suspension of proteins, non-Newtonian

effects have been omitted since linear response applies at

these low velocities. Second, we have disregarded hydrody-

namic coupling between cilia and considered that the effect

that cilia and/or nodal flow exert on neighboring cilia

dynamics can be neglected.We acknowledge that the feedback

induced by hydrodynamic coupling has proved to play an

important role in some ciliary phenomena such as metachro-

nal coordination in 912 cilia. However, in those cases the

intercilia distance is smaller than the cilia length.More impor-

tantly, there is no experimental evidence indicating that such

effects play a role in nodal 910 cilia. Video-microscopy

images support this fact (Supplementary Material, Movie S2;

and see Okada et al. (5)). Finally, the node is a bounded

structure in which the fluid circulates and thus, the leftward

flow induced by the cilia motion will eventually return back

(with a rightward flow). Sincewe aremainly interested in how

FIGURE 2 Geometrical considerations for establishing the local bending

(a) and the effective radius of a sphere (b). The local bending l induced by

a time-delayed dynamics can be easily computed in terms of the product

between the vectors e~i11;kðtÞ and e~i;kðtÞ (see text). We include the effect of

the local conformation (shape) of cilia by means of an effective radius,

ai,k(t), that accounts for the portion of a sphere that is covered by its nearest

neighbors with respect to its direction of motion. In this figure we show for

sphere i the masking effect due to sphere i 1 1. We have highlighted the

portions of its diameter that are covered and uncovered by means of dashed

and solid lines, respectively.
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the asymmetric leftward flow is created by the motion of cilia,

we have left boundary effects out of our description.

FLUID FLOW INDUCED BY A CILIUM

The formation of an asymmetric leftward flow within the

node can be readily analyzed in our proposed modeling

framework based on a two-phase cilia dynamics. Since

nonplanar two-phase beating nodal cilia bend during the

recovery stroke, the effect of conformational changes then

comes into play: the effective area exposed to the fluid by the

cilia is reduced and therefore so does the velocity transmitted

to the fluid (23). As a result a net thrust per revolution is

impelled to the fluid and an asymmetric flow may arise (23).

It this section we explore the fluid flow dynamics induced by

a single cilium to fully characterize the proposed mechanism.

To this end, we first briefly analyze a simplified and

revealing scenario.

We can reduce the complexity of our model by using the

most basic description of a cilium that captures all the

dynamics of a three-dimensional beating using only two

moving spheres attached to the static floor sphere at the base

of the cilium. Thus, we have studied the flow induced by such

a cilium by computing the average of the velocity field over

a period of motion at different points in space according to

U~ðr~Þ ¼ 1

T

Z T

0

u~1ðr~; fR~i;1g; tÞdt:

The flow is computed at the points x 2 f�60a,0,60ag, y 2
f�60a,0,60ag (Fig. 3). The study indicates that a two-phase

motion of cilia is, in effect, necessary for inducing

a systematic directional flow. If the cilium rotates as a rigid

rod (it does not bend) around an axis posteriorly tilted, the

flow is leftward on top of the cilium but not all over the space

(Fig. 3 a). In contrast, if the cilium is straight (power stroke)

when moving toward the left and it is bent (recovery stroke)

when moving, more slowly, toward the right (u ¼ 3p/2),

a net leftward flow arises (Fig. 3 b).
Taking into account the latter and returning to the analysis

of our model in terms of a complete description of a cilium

(16 moving spheres), we have first obtained numerically the

trajectory of the tip of a cilium performing a nonplanar

beating around an axis tilted to the posterior (Q � 40�) with
frequency f � 10 Hz and apex angle C � 40�, which are the

parameter values characterizing the dynamics of cilia in the

mouse node (see Materials and Methods and Okada et al.

(5)). We include the time-dependent bending of cilia, by

choosing a value of the time delay that leads to the

experimentally measured ratio between angular speeds

(j̇rec=j̇pow � 0:6� 0:7). The projection of the numerically

computed trajectory of the tip of the cilium onto the (x-y)
plane for these parameter values perfectly fits the experi-

mental data concerning the motion of cilia (Fig. 4 a, and
Supplementary Material, Movie S1; and see Okada et al.

(5)). We have then computed the trajectory of beads

embedded in the flow created by this cilium. The beads

perform a closed trajectory, moving faster above the cilium

than below it. If the bending of the cilium is larger and the

recovery stoke becomes slower, the beads become displaced

to the left along time (Fig. 4 b). In contrast, if the cilium only

rotates, without beating (bending), around an axis tilted to

the posterior, the beads perform a closed circular trajectory

with the same speed above and below the cilium (Fig. 4 c).
Our results show that a cilium moving with a two-phase

beating dynamics is able to induce an asymmetric flow,which

is faster above the cilia than close to the cell surface, in

agreement with the fluid flow dynamics described for a 912

cilium in paramecium (23). For strong asymmetric two-phase

beating dynamics, the fluid flow induced by a single cilium

becomes leftward.

FIGURE 3 Results for the time-averaged flow induced by one cilium at

different points (x,y) in the plane z ¼ 2L. The base of the cilium is located at

the center of the field (x,y,z) ¼ (0,0,0) and its motion is around an axis tilted

to the posterior (Q ¼ 0.22p � 40�) with apex angleC ¼ 0.22p � 40�. The
length of the cilium is L ¼ 4a (n ¼ 2). Vectors have been scaled to the same

magnitude. (a) If the cilium rotates along a posteriorly tilted axis without

bending (tb ¼ 0), no systematic leftward flow is induced. (b) A net leftward

flow is induced if the cilium performs a nonplanar beating motion around an

axis tilted to the posterior with power stroke for leftward motion (tb¼ 2p/v,

u ¼ 3p/2).
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MOTION OF PASSIVE TRACERS IN THE
MURINE NODE

We now focus on the flow induced by many of these beating

cilia distributed on a pearlike shape as in the murine node. As

in experimental assays, we have tracked the trajectory of

several beads distributed along the node and set initially at

z ¼ 5–7mm on top of the cell surface (base of the node). Cilia

are nonsynchronized. We have checked that cilia synchroni-

zation induces no appreciable effect in the behavior of the

fluid flow. Our in silico studies show that, for the bending and

beating dynamics of nodal cilia (Fig. 4 a, and Supplementary

Material, Movies S1 and S2), the beads move toward the

left performing some swirls (Fig. 5 a, and Supplementary

Materials, Movie S3). The motion of these beads is in perfect

agreement with the experimental data. The average speed of

several beads distributed over the entire node at 5 mm above

the cell surface is Æuxæ ¼ 14 6 6 mm/s (leftward, Fig. 5 b),
which is in the range of fluid flow speeds reported in

experimental studies (2,3,5).

In addition, our model unveils how the flow depends on

different parameters of the ciliary dynamics. In Fig. 5 c we

show for the wt situation the dependence of the flow on

the asymmetry between the power and recovery strokes by

keeping the same angular velocity (that is, depending on the

stiffness of cilia). As the angular speed of the recovery stroke

decreases with respect to the power stroke, the leftward fluid

flow becomes faster. In Fig. 5 d we show that larger intercilia

distances also reduce the fluid flow speed. Other in silico

experiments show that the leftward flow is slower if the

frequency of motion is lower, cilia are shorter, the apical

angle is smaller, and/or the tilting angle is reduced.

MOTION OF PASSIVE TRACERS IN THE INV
MUTANT NODE

The mechanism proposed herein help us to understand the

dynamics of fluid flow in the mouse inv mutant. The inv
homozygous mutants exhibit complete L/R reversal (49).

Surprisingly, in invmutants a leftward flow is also registered,

and the average angular frequency of cilia is equivalent to that

in wt. However, the flow velocity is slower than in wt
phenotypes and the beads trajectories are less directional. We

have hypothesized that cilia dynamics appears due to

a combined effect of internal and external mechanisms such

that the power stroke occurs when less viscous resistance is

found by the cilia, i.e., when cilia are moving far from the cell

surface. Therefore, anteriorly tilted clockwise rotating cilia

would perform their power stroke when moving rightwards,

generating a net rightward thrust per revolution. Therefore,

we can conjecture that the inv mutants anomaly specifies the

tilting axis in the sense that a broad distribution of angles

holds (that is, in which some cilia are tilted toward the

anterior, but with an overall bias to the posterior). Such

a hypothesis is, in fact, in agreement with recent experimental

results that also show a fraction of cilia are immobile (5). In

Fig. 6, and according to recent experimental data, we show

a particular casewhere 50% or the cilia (randomly chosen) are

immobile and 20% (randomly chosen) are anteriorly tilted,

performing a reversed beating with power stroke toward the

right. As expected, our in silico experiments show that, in that

FIGURE 4 Numerical results for the motion of a cilium and beads

embedded in the flow generated by a single cilium for different ciliary

dynamics. (a) Trajectory of the tip of a cilium tilted to the posterior with a

nonplanar beating motion with power stroke toward the left (full line) and re-
covery stroke (dotted line) toward the right (n¼ 16, u ¼ 3p/2, tb ¼ 0.5p/v,

C ¼ Q ¼ 0.22p � 40�). The base of the cilium is indicated by the shaded

circle. (b and c) Dynamics of beads. Shaded circles show the initial position

of beads. The dotted lines corresponds to the projection of the trajectory of

the tip of the cilium. The motion of beads is tracked over the entire space

during more than 300 periods of beating or rotation and projected onto the

(x-y) plane. (b) The beads (solid, dark shading) embedded in the flow created

by a cilium with a nonplanar beating resembling nodal cilia (tb ¼ 0.5p/v,

C ¼ Q ¼ 0.22p � 40�, u ¼ 3p/2) move faster on top of the cilium than

close to the cell surface. The beads (light shading) embedded in the flow

created by a cilium with a stronger bending and a slower recovery stroke

move leftward (tb¼ 2p/v,C¼Q¼ 0.22p� 40�, u¼ 3p/2). (c) The beads

embedded in the flow induced by a cilium that rotates as a rigid rod (tb ¼ 0)

around an axis tilted to the posterior (C ¼ Q ¼ 0.22p � 40�) rotate with

uniform speed.
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case, the motion of the beads is slower. The flow velocity then

reads,ux.¼ 26 4 mm/s (leftward), and the trajectories are

more erratic than in wt embryos (Fig. 6, and Supplementary

Material, Movie S3). Other cilia arrangements, keeping the

same anomalous distribution of tilting angles, provide an

equivalent value of the flow velocity. Importantly, our

analysis of cilia dynamics in inv/inv embryos confirms that

a set of cilia is tilted anteriorly and that, in that case, they

present a reversed beating—i.e., the power stroke is

performed when moving rightwards (Fig. 6, c and d; and
see Okada et al. (5)).

DISCUSSION

The nonplanar dynamics of the cilia that corresponds to our

model is characterized by a two-phase nonplanar beating

motion in which the cilium moves quickly, rigidly, and

vertically toward the left during the power stroke. The return

rightward motion, during the recovery stroke, is slower, and

the cilium moves close to the cell surface and bends. This

nonplanar beating motion is supported by the observed

trajectories of the tip of the cilium, as well as by the non-

constant frequency of rotation measured from fast video-

recording of the ciliary motion. Thus, by means of polymer

hydrodynamics modeling, we show that this motion of cilia

(which we propose results from an effective combined effect

of viscous interaction between cilia and the cell surfaces and

intraciliary dynamics) leads to the emergence of the asym-

metric leftward flow. Our modeling approach for describing

the dynamics and the shape of a cilium allows for the com-

putation of the time-dependent fluid flow induced by the

motion of many moving cilia. Importantly, the effect of the

bending of the cilium on the fluid flow is taken into account. In

addition, we have set the equation of motion describing the

dynamics of a spherical particle, such as a fluorescent bead

embedded in the flow. We have also been able to shed some

light on the dynamics of the inv mutants. By hypothesizing

that anteriorly tilted cilia with a clockwise motion will

perform the power strokewhenmoving vertically far from the

cell surface and, thus, in a rightward direction, we have been

able to numerically obtain the features of the observed flow in

invmutant embryos. Finally, our theoretical approach helps to

elucidate how the flow depends on different parameters.

Hence, by increasing the distance among cilia in our in silico

experiments the velocity of the flow is reduced. The same

happens when the motions of the power and recovery strokes

aremore similar and cilia are stiffer. These observationsmight

shed light on recent experimental results on ciliary and fluid

flow dynamics for other vertebrate species (5).

Summarizing, we have presented an approximated but

powerful modeling framework that provides a platform for

understanding the essential biological features of ciliary

motion and that accounts for the asymmetry of the fluid flow

in the murine node and consequently for the L/R axis

FIGURE 5 Numerical results for the motion of beads

and the flow in the murine node. (a) Motion of beads

embedded in wt embryos with beating cilia. The beads are

tracked during 60 periods of beating. Dots indicate the

initial positions of the beads (z ¼ 5 mm). All cilia are

posteriorly tilted with their bases located at the center of

the circles. The bar stands for the statistical deviation.

Anterior (A), posterior (P), left (L), and right (R) sides are
indicated. (b) Average fluid flow velocities for wt embryos

along the three anatomical axis. (c–d) Numerical results for

the leftward flow Æuxæ for different ciliary dynamics and

distances between cilia. (c) Leftward flow for different

bending properties (different time delays tb). If tb increases,

cilia are more bent and move more slowly during the

recovery stroke inducing a faster leftward flow. (d)
Leftward flow for several distances d between cilia. The

leftward flow is slower for larger distances between cilia.

In both figures, parameter values are C ¼ Q ¼ 0.22p �
40�, u ¼ 3p/2, f ¼ 10 Hz, a ¼ 150 nm, and n ¼ 16. The

bars correspond to the standard deviation s. (a, b, and d)

tb ¼ 0.5p/v.
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specification. Thus, an anteroposterior asymmetry (posterior

tilting) coupled to a dorsoventral asymmetry (ventral pro-

trusion of clockwise rotating cilia) elicits a L/R symmetry-

breaking event in the ciliary dynamics that, in an early stage,

is collectively translated to the entire ciliated organ by the

fluid flow.
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